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Abstract—Parallel coordinates is well-known as a popular
tool for visualizing the underlying relationships among vari-
ables in high-dimensional datasets. However, this representa-
tion still suffers from visual clutter arising from intersections
among polyline plots especially when the number of data
samples and their associated dimension become high. This
paper presents a method of alleviating such visual clutter by
contracting multiple axes through the analysis of correlation
between every pair of variables. In this method, we first
construct a graph by connecting axis nodes with an edge
weighted by data correlation between the corresponding pair
of dimensions, and then reorder the multiple axes by projecting
the nodes onto the primary axis obtained through the spectral
graph analysis. This allows us to compose a dendrogram tree
by recursively merging a pair of the closest axes one by one.
Our visualization platform helps the visual interpretation of
such axis contraction by plotting the principal component of
each data sample along the composite axis. Smooth animation
of the associated axis contraction and expansion has also been
implemented to enhance the visual readability of behavior
inherent in the given high-dimensional datasets.
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I. INTRODUCTION

Parallel coordinates provides us with an effective means

of visualizing high-dimensional data by plotting each sample

in terms of multiple vertical axes as a polyline. This visu-

alization technique is useful in a sense that we can visually

understand the degree of correlation between data samples

in terms of two adjacent axes. Nonetheless, this represen-

tation still suffers from distracting visual clutter especially

when we have to analyze a larger amount of datasets of

higher dimensions, because the associated polyline samples

intricately overlap with each other within the limited screen

space.

Conventional techniques alleviate this technical problem

by improving the readability of the parallel coordinates plots

themselves, for example, by employing edge bundling or

illustrative rendering techniques. This implies that previ-

ous studies rather focused on merging polyline samples

to enhance the visual representation, and considered little

about combining multiple axes in the parallel coordinates.

However, it is also true that, if some pair of dimensions

is highly correlated with each other, we can easily guess

the arrangement of data samples along one dimension by

referring to the other dimension. This inspires us to merge

a set of multiple vertical axes into a new composite axis

to systematically reduce the visual clutter arising from high

dimensionality of the data.

This paper introduces a concept of contractible parallel

coordinates, which enables the contraction of parallel co-

ordinates axes to illuminate the global trends of the given

data samples in terms of a reduced set of dimensions. This

is accomplished by reordering the parallel axes through the

spectral analysis of a weighted graph composed by referring

to data correlation among multiple dimensions, and then

merging the most correlated pair of axes to contract the

overall parallel coordinates plots. The history of such axis

contraction is represented by a dendrogram tree together

with a reduced set of parallel axes, on which the data sam-

ples are plotted by projecting them calculating their principal

components. Animated preview of the axis contraction has

been also implemented to clearly illustrate how the high-

dimensional data plot can be transformed into a simpler one.

Figure 1 provides snapshots of the proposed contractible

parallel coordinates, where data samples are classified into

three groups using k-means clustering.

This paper is structured as follows. Section II provides a

brief survey on existing parallel coordinates representations

and relevant researches. Section III describes details of the

proposed approach for contracting parallel coordinates to

reveal hidden global trends of the given datasets. Section IV

presents implementation details and the associated experi-

mental results. Section V concludes this paper and refers to

possible future extensions.

II. RELATED WORK

Parallel coordinates has been popular for visualizing

multivariate data since Inselberg conducted a pioneering

work [2]. This representation helps us plot the samples of

each variable along a vertically parallel axis and further

observe the degree of correlation between the samples

along two neighboring axes. As described earlier, even with

parallel coordinates plots, we still suffer from visual clutter

arising from a large amount of high-dimensional data due to

their complicated overlaps within the limited screen space.

This visual clutter problem has aggressively been tackled by

devising rendering styles of the polyline samples to enhance



(a) (b)

(c) (d)

(e)

Figure 1. Contractible parallel coordinates. (a) Ordinary parallel coordinates plots of the “Iris” dataset [1]. (b) Vertical axes are reordered by referring to
data correlation among dimensions. (c) Middle two axes are contracted to reduce the number of dimensions. (d) Left two axes are further combined. (e)
Animation frames during the axis contraction from (b) to (c).

the readability of the parallel coordinates plots. For example,

Zhou et al. [3] invented an algorithm for bundling polyline

samples of high correlation, and McDonnell and Mueller [4]

employed illustrative visualization by applying translucent

rendering styles to a set of highly-correlated data samples.

On the other hand, the readability of the data samples is

also improved by rearranging the layout of vertical parallel

axes by referring to data correlation between every pair of di-

mensions. Yang et al. [5] proposed an interactive dimension

reordering and spacing based on dimension hierarchies in

parallel coordinates, which has been followed by improved

reordering of parallel axes by Peng et al. [6], where they

systematically reduced visual clutter by maximizing data

correlation between pairs of adjacent axes.

For more sophisticated reordering of dimensions, a net-

work structure called pairwise correlation graph [7] is often

constructed where the nodes of the graph correspond to the

dimensions while the edges represent some relationships

such as data correlation between the corresponding pairs

of dimensions. Hurley and Oldford [8] ameliorated paral-

lel coordinates representation by extracting Eulerian tours

and Hamiltonian decompositions of the pairwise correlation

graph. Zhang et al. [9] employed the pairwise correlation

graph as an interface so that users can travel along a proper

order of parallel coordinates axes and further select a specific

subset of the axes to conduct more detailed analysis of the

data. Heinrich et al. [7] constructed parallel coordinates

matrix representation by covering the pairwise correlation



(a)

L = D −A

=









1.690 0.000 0.000 0.000
0.000 0.778 0.000 0.000
0.000 0.000 2.256 0.000
0.000 0.000 0.000 2.138









−









0.000 0.000 0.872 0.818
0.000 0.000 0.421 0.357
0.872 0.421 0.000 0.963
0.818 0.357 0.963 0.000









=









1.690 0.000 −0.872 −0.818
0.000 0.778 −0.421 −0.357

−0.872 −0.421 2.256 −0.963
−0.818 −0.357 −0.963 2.138









(b)

Eigenvalues: λ1 = 0.000, λ2 = 0.958, λ3 = 2.731, λ4 = 3.174

Eigenvectors: e1 =









0.500
0.500
0.500
0.500









, e2 =









−0.453
0.847

−0.185
−0.209









, e3 =









−0.728
−0.176
0.331
0.573









, e4 =









0.119
0.045

−0.779
0.615









(c)

Figure 2. Reordering parallel coordinates axes by referring to the pairwise correlation among dimensions. (a) A graph representing similarity among
dimensions. (b) Computation of the Laplacian matrix L of the graph from the diagonal matrix D and adjacency matrix A. (c) The eigenvalues and
normalized eigenvectors of the Laplacian matrix L.

graph with a minimum number of Hamiltonian paths. Our

approach also employs a variant of the pairwise correlation

graph for reordering the parallel coordinates axes while we

take advantage of dimensionality reduction of the graph

for better grouping correlated axes. Readers can refer to a

recent survey [10] for more details on the state of the art in

parallel coordinates. Furthermore, our framework can also be

considered as a technique for identifying feature subspaces

spanned by appropriate combinations of dimensions and

data samples in the original data space. Refer to several

papers [11], [12] for recent technical advancements on this

topic.

III. CONTRACTING AXES IN PARALLEL COORDINATES

This section describes an algorithm for reordering vertical

axes of the parallel coordinates by referring to data correla-

tion between each pair of dimensions first and then merging

two most correlated axes step by step to illuminate the global

behavior of the given data samples. Our algorithm consists

of four steps as follows:

1) Calculating correlation among dimensions

2) Encoding pairwise correlation as a graph

3) Reordering Axes via spectral graph analysis

4) Axis contraction based on dendrogram trees

In the remainder of this section, we describe these respective

steps in the following subsections.

A. Calculating correlation among dimensions

As for the pairwise relationship between a pair of dimen-

sions, we employed the correlation coefficient developed

by Pearson [13]. Suppose that ai (i = 1, 2, . . . , n) and

bi (i = 1, 2, . . . , n) are data values of the a- and b-th
dimensions. The correlation coefficient can be given by:

n
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where a and b are the averages of {ai} and {bi}, and thus can

be written as a = 1

n

∑

n

i=1
ai and b = 1

n

∑

n

i=1
bi. Note that

the correlation coefficient ranges from −1 to 1 according

to Eq. (1). Moreover, it approaches to 1 if ai is likely to

be large (small) as bi increases (decreases), while −1 if ai
is likely to be large (small) as bi decreases (increases). If

there exists little correlation between the two variables, the

corresponding correlation coefficient almost vanishes.

In our approach, we define the similarity between a

pair of dimensions as the absolute value of the correlation

coefficient. This is because, if the two dimensions have high

correlation we can easily guess the behavior of one variable

from that of another. On the other hand, we can know

little about the relationships between the two variables if

the corresponding correlation coefficient is quite small. In

practice, we reorder the sequence of dimensional axes by

referring to the correlation coefficients first and then merge

highly-correlated ones to systematically reduce the number

of axes to better illuminate the entire trends of the data.

B. Encoding pairwise correlation as a graph

Our next step is to represent the data correlation between

each pair of dimensions as a graph. In practice, we construct
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Figure 3. Dendrogram-based clustering of dimensions. (a) Step-by-step
axis contraction. (b) A dendrogram that represents this history of axis
contraction process.

a variant of the pairwise correlation graph introduced in

[7], where a node represents some dimension and an edge

corresponds to the relationship between a pair of dimensions.

In our approach, we use the precomputed similarity values,

i.e., the absolute correlation coefficients, as the respective

edge weights of the graph.

Nonetheless, the definition of our graph slightly differs

from that of the original pairwise correlation graph [7] in that

we do not insert an edge to the graph if the corresponding

absolute correlation coefficient is less than some threshold.

This is because we would like to make the graph as sparse as

possible so that we can localize the similarity relationships

among dimensions for later use. As for the choice of the

threshold, we tested a set of possible threshold values

and observed to what extent we can properly discriminate

between the similarity between every pair of coordinate

axes for each value. In the end, we learned that 0.15 is

empirically the maximum threshold that still retains the

similarity relationships among coordinate axes. Thus, we set

the threshold to 0.15 in our approach. Figure 2(a) shows

a graph we constructed from the similarity values among

dimensions of the “IRIS” dataset [1] in Figure 1(a).

C. Reordering axes with spectral graph analysis

Now we are ready to reorder the parallel coordinates axis

by referring to the pairwise similarity among dimensions.

For this purpose, we employ the spectral graph analysis [14],

which is known as a tool for decomposing the graph into

clusters by cutting edges of minimal weights [15], and pro-

jecting the graph onto low-dimensional space while keeping

similar nodes maximally close to each other [16]. We use

this tool to find an optimal ordering of the vertical axes in the

sense that we can appropriately merge a set of dimensions

of high similarity.

The spectral analysis begins with calculating the Lapla-

cian matrix L from the node connectivity of the graph.

As shown in Figure 2(b), the Laplacian matrix L can be

defined as the difference from the diagonal matrix D and the

adjacency matrix A. Here, the adjacency matrix A can be

composed in such a way that the (a, b)-th entry corresponds

to the similarity value between the a- and b-th dimensions, as

shown in Figure 2(b). The diagonal matrix D is constructed

from A so that the a-th diagonal value is equal to the sum

of the entries in the a-th row (or column) of A. These

two matrices allows us to obtain the Laplacian matrix L

by calculating D −A as shown in Figure 2(b).

The parallel coordinates axes are finally reordered by

computing the eigenvalues and normalized eigenvectors of

the Laplacian matrix L. Note that the smallest eigenvalue

λ1 always becomes zero since the Laplacian matrix L is

not full rank according to the definition. Thus, we refer to

the entries of the eigenvector e2, which correspond to the

second smallest eigenvalue λ2. As shown in Figure 2(c), for

example, we can project each dimension onto the number

line by referring to the entries of e2 to seek an optimal

ordering of the parallel coordinates axes, as illustrated at the

top of Figure 3(a). In this way, the spectral analysis of the

similarity weighted graph permits us to find an appropriate

ordering of the axes in the sense that we can naturally merge

a pair of axes that are similar to each other.

D. Axis contraction based on dendrogram trees

Our last task is to reduce the number of dimensions by

merging axes that are adjacent to each other in the sequence

we have arranged so far. In our approach, this has been

accomplished by successively merging a pair of adjacent

axes that are the most similar to each other. This consecutive

combination of two dimensions results in dendrogram-based

clustering of parallel coordinates axes.

Suppose that all the dimensions are aligned along the

number line by referring to their corresponding projected

coordinates as depicted in Figure 3(a), for example. First of

all, we can merge Dimensions 3 and 4 as illustrated at the top

of Figure 3(a), since the difference in the coordinate is the

smallest among all pairs of adjacent dimensions. When we

merge the two dimensions by contracting the corresponding

vertical axes, we update the coordinate of the combined



dimension along the number line as the average of the two

coordinates of the original dimensions. In this case, the

average coordinate is set to be ((−0.209) + (−0.185))/2 =
−0.197. We again try to merge the axes of Dimensions

1 and 3&4 to compose a new axis since these two axes

are the closest among all the pairs of adjacent dimensions,

as shown in the middle of Figure 3(a). This time, the

coordinate of the merged axis is computed as a weighted

average of the previous two axes since Dimension 3&4

originally consists of the two dimensions. This implies

that the new coordinate of the composite axis becomes

((−0.453) × 1 + (−0.197) × 2)/3 = −0.282, which is

equivalent to the average coordinate of Dimensions 1, 3,

and 4. This axis contraction process is repeated until all the

dimensions are merged into one, as revealed at the bottom

of Figure 3(a).

This step-by-step combination of parallel coordinates axes

can be represented as a dendrogram tree of all the dimen-

sions, as shown in Figure 3(b). Actually, in our visualization

system, the history of dimension combinations is visualized

as a dendrogram tree, which is attached to the bottom of the

contracted parallel coordinates as shown in Figure 1. This

indeed helps us visually identify how we have merged the

parallel coordinates axes so far during the analysis of the

given high-dimensional data.

Note that, after having combined multiple dimensions,

we still have to plot the data samples along the composite

axis so that we can visually inspect the distribution of the

data samples in that composite space. For this purpose, we

project the data samples of the associated set of combined

dimensions to the primary axis through principal component

analysis (PCA), and plot the samples along the composite

axis by referring to their principal components. This suc-

cessfully transforms the overall spatial distribution of the

data samples within the set of merged dimensions into the

contracted parallel coordinates representation.

IV. IMPLEMENTATION DETAILS AND RESULTS

Our prototype system was implemented on a Laptop

PC with an Intel Core i7 (2GHz) and 8GB RAM, and

the source code has been written in C++ using OpenGL

and GNU Scientific Library for matrix computation. We

equipped our system with an interface for contracting and

expanding parallel coordinates axes, where the associated

transformation will be animated with ease-in and ease-out

effects to provide more temporally coherent previews of the

parallel coordinates plots.

Figure 1 shows a simple example where the “IRIS”

dataset [1] has been visualized using our contractible parallel

coordinates. Our approach transforms the original parallel

coordinates plots in Figure 1(a) into those in Figure 1(b)

by reordering the axes through the spectral analysis of

a similarity-weighted graph among the dimension nodes.

The number of dimensions is reduced to 3 by contracting

(a)

(b)

(c)

Figure 4. Visualizing the “Wine Quality” dataset [1] using the contractible
parallel coordinates. (a) Ordinary parallel coordinates plots. (b) Axis
reordering still cannot fully reduce visual clutter. (c) Axis contraction
illuminates the global trends of the data.

the middle two axes as shown in Figure 1(c), and then 2

by merging left two axes as shown in Figure 1(d). Our

system can also animate the axis contraction process in

order to provide users with temporally coherent previews

of the dimensionality reduction process, as demonstrated in

Figure 1(e). Another dataset “Wine Quality” [1] has been

also visualized as shown in Figure 4. In this case, the

visual quality of the parallel coordinates plots of the original

12D dataset is degraded due to the visual clutter problem

(Figure 4(a)). However, our contractible parallel coordinates

representation significantly alleviates this problem by re-

ordering the axes (Figure 4(b)) first and then reducing the

number of dimensions to 6 while keeping the overall trends

of the data (Figure 4(c)).



Moreover, we also conducted a small user study to inves-

tigate how the correlations among coordinate axes are better

visualized using our approach, where we collected 8 partic-

ipants (5 females and 3 males). We asked the participants

to see how we can contract the parallel coordinates plots

by combining and decomposing the vertical axes first, and

then answer the underlying principle for such contractible

representation of the multivariate data samples. In this first

case study, 4 participants correctly pointed out that our

approach tries to merge coordinates axes that are highly

correlated with each other while leaving other uncorrelated

axes untouched. In the second case study, we formally ex-

plained our mechanism for contracting parallel coordinates

axes to the participants and asked them to interact with

our visualization system in practice. After this stage, all

the participants excluding one admitted the fact that our

approach tries to merge pairs of coordinate axes in the order

of correlation.

These experimental results demonstrated the capability

of the proposed approach for elucidating important features

inherent in the high-dimensional data.

V. CONCLUDING REMARKS

This paper has presented an approach to contracting the

parallel coordinates representation to alleviate visual clutter

problems arising from a large amount of high-dimensional

datasets. For this purpose, we compose a graph that rep-

resents pairwise correlations among dimensions first, and

then rearrange the parallel coordinates axes through the

spectral analysis of that graph. Dendrogram-based clustering

of dimensions are performed to successively contract the

parallel coordinates axes to better visualize the global trends

of the given high-dimensional data.

Our future extension includes the sophistication of the

interface for interactively identifying meaningful subspaces

in a set of high-dimensional data samples. Automated clus-

tering of both data samples and dimensions will definitely

augment the capability of our data analysis framework and

remains to be tackled.
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